The Blake CE School Calculation Policy

Introduction:

Children are introduced to the processes of calculation through practical, oral and mental activities, including games and puzzles in order to promote confidence and enjoyment of maths throughout the curriculum. As they begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, so that they develop both conceptual understanding and fluency in the fundamentals of mathematics. Whilst interpreting signs and symbols involved with calculation, orally in the first instance, children use models and images to support their mental and written methods of calculation. As children's mental methods are strengthened and refined they begin to work more efficiently, which will support them with using succinct written calculation strategies as they are developed. This calculation policy is to be used alongside resources such as the 'Maths No Problem' and 'Power Maths' books and Key Instant Recall of facts document (KIRFS).

From Early Years to Year 1:

There are fundamental skills that it is important for children to develop an early understanding of as building blocks to future learning in maths, including that linked to calculation. A selection of the skills include:

- Ordinality - 'the ordering of numbers in relation to one another' - e.g. (1, 2, 3, 4, 5...)
- Cardinality - 'understanding the value of different numbers' - e.g. $(7=\square 17=\square+2$
- Equality - 'seven is the same total as four add three' - e.g \square $=$

- Subitising - 'instantly recognizing the number of objects in a small group, without counting them' - e.g.

- Conservation of number - 'recognising that a value of objects are the same, even if they are laid out differently' - e.g
- One-to-one correspondence - e.g.
- Counting on and back from any number - e.g. 'five add three more totals eight' 'ten take away three totals seven'
- Using apparatus and objects to represent and communicate thinking - e.g.
- Maths language - using mathematical words verbally in every-day situations - e.g. 'climb up to the top' / 'climb down to the bottom'
- Use of number rods to begin introducing bar model and part/whole approach.

$70+30=100$
- Use of cherry model to support confidence with what a number is and partitioning.

- Use language of whole and parts.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice through progression in relevant practical maths experiences, visual representations and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images and the application of acquired number knowledge and skills. Children need to be able to apply their knowledge of number facts to larger calculations with an understanding of the multiplicative process of place value eg $2+3,20+30,0.2+0.3$

Secure mental calculation requires the ability to:

- recall key number facts instantly - for example, all addition and subtraction facts for each number to at least 10 then 20 by the end of Year 1. By the end of Year 2 children should be able to fluently recall sums and differences of multiples of 10. By the end of Year 3 children should add and subtract ones, tens and one hundreds to a three digit number. By the end of Year 4 children will be able to recall multiplication and division facts up to 12×12. By the end of Year 5 children will be expected to add and subtract numbers mentally with increasingly larger numbers. By the end of Year 6 children should be able to perform mental calculations, including mixed operations and larger numbers.
- Throughout KS1 and 2 children should be able to use doubling and halving efficiently for calculation. Instant recall of near doubles addition and subtraction facts to 20 supports calculation with increasingly larger numbers.
- use taught strategies to work out the calculation - for example, recognise that addition can be done in any order and use this to add mentally a one digit number or a multiple of 10 to a one-digit or two-digit number (Year 1), partition two-digit numbers in different ways including into multiples of ten and one and add the tens and ones separately and then recombine (Year 2).
- understand how the rules and laws of arithmetic are used and applied - for example, to add or subtract mentally combinations of one-digit and two-digit numbers (Year 3), and to calculate mentally with whole numbers, fractions, percentages and decimals (Year 6).
- round and adjust numbers to help mental calculation and be able to estimate using their 'feel' for numbers e.g. 397-49
- depth in the recall of number facts is planned for. (Missing number problems and variation are part of calculation strategies used)

By the end of Year 6, children will be equipped with efficient mental and written calculation methods, which they use with fluency. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. At whatever stage in their learning, and whatever method is being used, children's strategies must still be underpinned by a secure depth, understanding and knowledge of number facts that can be recalled fluently.

The overall aims are that when children leave primary school they:

- Are able to recall number facts with fluency, having developed conceptual understanding through being able to visualise key ideas - such as those related to place value - through experience with practical equipment and visual representations;
- Make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads. Use of cherry model, bar model and number lines will support this.
- Have an efficient, reliable, written method of calculation for each number operation that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- Are able to make connections between all four number operations, understanding how they relate to one another, as well as how the rules and laws of arithmetic can be applied.

	Counting	Mental maths strategies	Rapid recall	Written calculation and appropriate mod understanding	d images to support conceptual
Stage 1:	Count in ones to and across 100 forwards and backwards starting from 0,1 and other numbers. Count in multiples of two, five and ten.	Pupils use apparatus to explore addition as the inverse of subtraction. 4 add 1 is 5 5 subtract 4 leaves 1	Rapid recall of all pairs of numbers totalling numbers up to 20. Use structured apparatus i.e. Numicon, tens frames, abaci, etc.	Combining two groups: - Children develop a mental picture of the number system for use with calculation. A range of key models and images support this, alongside practical equipment. - Teachers model use of number tracks to count on or line up counters/objects along the number track. This is a precursor to use of a fully numbered number-line.	-0. ○○ $3+2=5$ 'eight add two more makes ten’ 'one more than four is five'

Stage 2:	Continue practicing above skills. Count in steps of 2, 3 and 5 forwards and backwards to and from	Reorder numbers when adding, i.e. sero.	Recall start with largest number, find for all bonds, etc. numbers to Count in tens from any number - link to coins in a piggy bank as well as a number square.	Add doubles and derive near doubles. Round numbers to the nearest 10.

Counting on from any number:

- Children begin to use numbered lines to support their own calculations, initially counting in ones before beginning to work more efficiently.

Counting on from the largest number:

- Children reorder calculations to start with the largest number.

Use of questions such as: 'How might I rearrange these to find the total?'

Stage 4:	Continue practicing previous skills. Count forwards and backwards from 0 in multiples of 6 , 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in tenths, hundredths and simple fractions using models and images, i.e. Dienes equipment, counting stick, ITPs.	Bridging through 60 for time, i.e. 70 minutes $=1$ hour and 10 minutes. Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check accuracy of answers.	$\begin{aligned} & 3 / 100= \\ & 11 / 100 . \end{aligned}$ Sums and differences of pairs of multiples of 10,100 or 1000. Addition doubles of numbers to 100 . Pairs of fractions totalling 1.	Expanded horizontal method, leading to columnar addition: - Written recording should follow teacher modelling around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards. - Teachers model how numbers can be partitioned into tens and ones, as well as in different ways, e.g. $20+5$ $10+15$ - As children move towards using a columnar method, links continue to be made with earlier models and images, including the number line.	It is crucial that empty number lines are kept as well as using more formal written calculation methods.

	Continue to count forwards and backwards in simple fractions. Count forward and backwards in appropriate decimals and percentages.	increasingly complex calculations, i.e. $1.7+2.8+$ $0.3=1.7+0.3$ $+2.8$ Compensating -i.e. $405+$ $399 \rightarrow$ add 400 and then subtract 1 .	pairs for fractions, percentages and decimals Doubles and halves of decimals, i.e. half of 5.6, double 3.4 . Sums and differences of decimals, i.e. $6.5+2.7$	'Forty plus seventy equals onehundred and ten.'... ...before recombining numbers. Teachers also model the language of: 'Four tens add seven tens total eleven tens or 110.' Teachers similarly advance to model the addition of two 3-digit numbers with the expectation that as children's knowledge of place value is secured, they become ready to approach a formal compact method.	
Stage 6:	Continue to practice previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. $0.8+0.35=$ $0.8+0.2+$ 0.15 using empty number lines. Partitioning using near doubles, i.e. $2.5+2.6=5+$ 0.1 Reorder decimals, i.e. $4.7+5.6-0.7$ $\text { ...as... } 4.7 \text { - }$ $0.7+5.6=4+$ 5.6.	Ensure all children are confident recalling basic facts to 20 and deriving facts using place value. Make links between decimals, fractions and percentages.	Columnar addition (formal written method): - The concept of exchange is introduced through continued use of practical equipment (manipulatives). - Teachers model: 1. "I have two tens and five ones, which need adding to four tens and seven ones." 2. "I add five ones to seven ones, which gives me twelve ones." 3. "I exchange ten of my twelve ones for a ten counter." 4. "I add my three tens and four tens to make seven tens." "Altogether, I have seven tens and two ones." - Teachers similarly advance to model the addition of two 3-digit	Pupils to be encouraged to consider mental strategies first. Formal columnar:

Subtraction:

	Counting	Mental strategies	Rapid Recall	Written calculation and conceptual understanding	ppropriate models and images to support
Stage 1:	Count in ones to and across 100, forwards and backwards starting from 0,1 and other numbers. Count in multiples of two, five and ten.	Pupils use apparatus to explore addition as the inverse of subtraction: 'four add one is five.' 'five subtract four leaves one'	Rapid recall of subtraction facts for numbers up to 10 . Use structured apparatus, i.e. Numicon, tens frames, abaci etc. \square	Subtraction as taking away from a group: - Children develop a mental picture of the number system for use with calculation. A range of key models and images support this, alongside practical equipment. Teachers model use of number tracks to count back or remove counters/objects from the number track or set. This is a precursor to use of a fully numbered numberline.	 'six take away two leaves four' 'one less than six is five'
$\begin{aligned} & \text { Stage } \\ & 2: \end{aligned}$	Continue practicing above skills. Count in steps of 2,3 and 5 , forwards and	Bridging through two digit numbers, i.e. $24-19=19+1$ +4 using number lines. Subtracting 11 by subtracting 10	Recall subtraction (and addition) facts for all numbers to 20.	Subtracting by counting back and on: Children begin to use numbered lines to support their own calculations, initially counting back in	Number line with all numbers labelled

	backwards to and from zero. Count in tens from any number - link to coins in a piggy bank as well as a number square.	and then 1 more. Move to subtracting 9 by subtracting 10 and adding 1 using apparatus.		ones before beginning to work more efficiently.			
$\begin{aligned} & \text { Stage } \\ & \text { 3: } \end{aligned}$	Continue practicing above skills. Count from 0 in multiples of $4,8,50$ and 100. Count on and back by 10 or 100 from any two digit number. Link to counting stick counting forwards and backwards flexibly. Count up and down in tenths linking to visual image.	Partitioning by bridging through 10 and multiples of 10 when subtracting. Continue to practice adjusting when subtracting 11 or 9 from a number. Relating inverse number operations - use structured apparatus to explore and understand that subtraction undoes addition.	Connect subtractions from ten to subtractions from multiples of 10 totalling 100. Use 10ps in tens frame. Subtract two digit numbers from 100 i.e. ? = 100-78	Finding the difference: - Teachers model how to find the difference when two numbers are relatively 'close together.' - Initially children compare two sets before moving on to a number line comparison. - Pupils are taught to choose whether to count on or back depending on which is more efficient.	Comparin Finding th Note: Find efficient w e.g. 61 2,003 Bar mode and solvin \square	ts: nce diff ert ction ?	parison or difference. a number line. ce is often the most subtraction problem, ng the difference oblems $\begin{aligned} & 315-185=? \\ & 185+?=315 \end{aligned}$

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stage 6: \& Continue to practice previous skills. Count forwards and backwards in simple fractions, decimals and percentages. \& Bridging through decimals, i.e. 1.5 -\(0.8=1.5-0.5\) then 0.3 using empty number line. \& Ensure all children are confident recalling basic facts to 20 and deriving using place value. Make links between decimals, fractions and percentages. \& \begin{tabular}{l}
Second stage of column method: \\
- The concept of exchange is introduced through continued use of practical equipment (manipulatives). \\
- Teachers model: \\
1. "I have seven tens and two ones. I need to subtract four tens and seven ones." \\
2. "At the moment, I cannot subtract seven ones from two ones, so I need to transfer one ten to become ten ones." \\
3. "Now I can take away seven ones from twelve ones, so that I have five ones left. \\
4. "I can now subtract four tens from six tens, which leaves me with two tens."
\end{tabular} \& \& \begin{tabular}{l}
lumnar: \\
Ones

\end{tabular}

\hline
\end{tabular}

Knowing multiplication and division facts to 12×12

Doubling and halving

Bar Model

\square

	Counting	Mental strategies	Rapid recall	Written calculation and appropriate models and images to support conceptual understanding	
Stage	Count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten.	Developing early conceptual understanding of multiplication:	Use objects, pictorial representations and arrays to show the concept of multiplication:
Recall odd and even numbers to					

					Use bar model to visualise multiplication number sentences 66 11 11 11 11 11 11
Stage 4:	Counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}$, $4 \mathrm{~s}, 5 \mathrm{~s}, 7 \mathrm{~s}$, $8 \mathrm{~s}, 10 \mathrm{~s}, 25 \mathrm{~s}$ and 1000s from zero. Count up and down in tenths and hundredths.	Derive factor pairs of numbers using models and images, e.g. Know what happens when a number is multiplied by zero or one. Use reordering to multiply three numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Relate multiplying a $3 / 2-$ digit by 1digit number with arrays towards using long/short multiplication:	Relate multiplying a 3/2-digit by 1-digit number, now also setting it out as short multiplication. $7 \times 13=91$ $7 \times 10=70$ $7 \times 3=21$ $=91$ At this stage, the non-statutory guidance in the national curriculum suggests teaching short multiplication; however, the team feel that an expanded form of calculation (as set out above) is be a better lead into long/short multiplication.

Stage 5:	Counting forwards and backwards in 2s, 3s, $4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$, $7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$, 10s, 25s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Relate multiplying a 4/3/2-digit by 1/2digit number with grid to using long multiplication:	10 3	10 100 30 18 234	80	$\begin{aligned} & \text { X13 } \\ & \\ & 24 \\ & 30 \\ & 80 \\ & 100 \end{aligned}$
Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and operations.	Recall \& use multiplication facts for all times-tables up to 12 X 12. In addition, use facts confidently to make larger calculations.	Relate multiplying a 4/3/2-digit by 1/2digit number with grid to using short multiplication:	H	$\begin{aligned} & 10 \\ & \hline \\ & 100 \\ & \hline 30 \\ & \hline 18 \\ & \times 13 \\ & \hline 54 \\ & 2 \\ & 180 \end{aligned}$	8 80 24	234

Division:

	Counting	Mental strategies	Rapid recall	Written calculation and appropriate models and images to support conceptual understanding	
$\begin{aligned} & \hline \text { Stage } \\ & \text { 1: } \end{aligned}$	Count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten. Recall odd and even numbers to 10 in reference to structured apparatus.	Developing early conceptual understanding of division as grouping and sharing:	Use objects, pictorial representations and arrays to show the concept of division as grouping and sharing. "Two children share six pencils between them" "Six children are asked to get into three equal groups"
$\begin{aligned} & \text { Stage } \\ & \text { 2: } \end{aligned}$	Count forwards and backwards in 2s, 3s, 5s and 10s from zero.	Begin to understand and use inverse number operations. $\begin{aligned} & \text { e0000 } \\ & 00000 \\ & \hline 0.0000 \end{aligned}$ 15	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall odd and even numbers to 20 in	Understanding division as repeated subtraction: - Investigate division as repeated subtraction. - Through teacher modelling,	Number lines and arrays: $12 \div 3=4$

Stage 4:	Counting forwards and backwards in 2s, 3s, $4 \mathrm{~s}, 5 \mathrm{~s}, 7 \mathrm{~s}$, 8s, 10s, 25s and 1000s from zero.	Derive factor pairs of numbers using models and images. Know what happens when a number is multiplied by zero or one. Use reordering to multiply three numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 3/2-digit by 1-digit number, representing this efficiently on a number line, also in relation to long division: - At this stage, no remainders are present unless in a practical context.	Children use an empty number line to chunk efficiently. $224 \div 8=28$ $\begin{array}{rrr} 8 & 28 \\ 8 \begin{array}{r} 224 \\ \hline 160 \end{array} & (8 \times 20) & \\ \hline \begin{array}{r} 64 \\ 64 \\ \hline \end{array}(8 \times 8) & 20 \times 8=-\frac{160}{64} \\ -\ldots o r \ldots & 8 \times 8=\frac{64}{0} \end{array}$
Stage 5:	Counting forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}$, $4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$, $7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}$, 10s, 25s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall \& use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2digit by 1-digit number, in relation to long division: - By this stage, there is a statutory requirement that children can use a formal written calculation method, such as long division. - Short division may begin to be taught alongside	As schools have autonomy to decide children's progression in learning between long and short division in Years 5 and 6, the maths team suggest beginning with long division. Remainders should be interpreted in the following ways when long division is used: - as whole numbers - as fractions - as decimals - through rounding in an appropriate way to the context

				long division, but still with use of visual - representations			
Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and different number operations.	Recall \& use multiplication facts for all times-tables up to 12 X 12. In addition, use facts confidently to make larger calculations.	Dividing a 4/3/2digit by 2/1-digit number, in relation to long and then short division: - By this stage, there is a statutory requirement that children can use formal written calculation methods, including long and short division. Use of visual representations - like the ones opposite - remain important.	Children's progression in lear short division in Years 5 and long division to short division. Remainders could be interpre when short division is used: - through rounding in an context	rning b 6, should eted in approp	ween long and move from e following way ate way to the

$504 \div 36=$
Step 1: Note down the 'pattern' of the dividing number.

In this case, the 'pattern' of 36 is achieved by adding the multiple of 30 and multiple of 6 .
$30+6 \quad 36$
$60+12 \quad 72$
$90+18 \quad 108$
$120+24 \quad 144$
$150+30 \quad 180$
$180+36 \quad 216$
$210+42 \quad 252$
$240+48 \quad 288$
$270+54 \quad 324$
$300+60 \quad 360$

Step 2: Complete the calculation using
the formal method for short division.

014
 $3 6 \longdiv { 5 ^ { 5 } 0 ^ { 1 4 } 4 }$

Pupils are encouraged to make jottings to ensure accurate regrouping of remainders. Example:

